Modelling dendritic solidification with melt convection using the extended finite element method

نویسندگان

  • Nicholas Zabaras
  • Baskar Ganapathysubramanian
  • Lijian Tan
چکیده

Dendritic solidification of pure materials from an undercooled melt is studied using the extended finite element method/level set method for modelling the thermal problem and a volume-averaged stabilized finite element formulation for modelling fluid flow. The extended finite element method using evolving enrichment functions allows accurate modelling of the discontinuous thermal conditions at the moving sharp freezing front thus capturing its motion precisely. The solution of the velocity field in the melt is obtained assuming that the sharp-interface is diffused over the length of two finite elements. The methodology presented is shown to be an effective tool for capturing the interface phenomena and freezing interface growth using a single uniform finite element grid. The whole formulation is packaged into a flexible, modular and parallel library with the ability to incorporate new physics. Comparisons with other numerical methods as well as analytical results emphasize the fidelity of the method in modelling the underlying physical phenomena and growth mechanisms. Various examples of dendritic growth in twoand three-dimensions are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convection Effects in Three-dimensional Dendritic Growth

A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for ...

متن کامل

Modelling of dendritic growth in ternary alloy solidification with melt convection

A two-dimensional lattice Boltzmann-cellular automaton model is coupled with the CALPHAD (Calculation of Phase Diagrams) method for simulating dendritic growth during ternary alloy solidification with convection. In the model, the kinetics of dendritic growth is determined by the difference between the equilibrium liquidus temperature and the actual temperature at the solid/liquid interface, in...

متن کامل

Modeling of Dendritic Growth in Alloy Solidification with Melt Convection

In typical solidification processes the flow of molten metal is usually regarded as an unavoidable phenomenon potentially affecting the morphology of dendritic growth. Fundamental understanding of such flow is thus important for predicting and controlling solidification microstructures. This paper presents numerical simulations on the evolution of dendritic microstructures with melt convection....

متن کامل

Melt Flow Control Using Magnetic Fields and Magnetic Field Gradients

Solidification of materials to near net shape is one of the most commonly used and economical methods of manufacturing. Different industries impose different restrictions and design objectives on the solidification process. For example, single crystal growth requires a planar growth front whereas casting requires homogenous material distribution. There are various techniques to control the flow...

متن کامل

A Numerical Investigation of Directional Binary Alloy Solidification Processes Using a Volume-averaging Technique

A numerical investigation of directional binary alloy solidification processes is presented. In particular, a mathematical model is developed to study macrosegregation patterns as a consequence of thermal-solutal convection in the melt and mushy zone. A good understanding of the basic mechanisms of macrosegregation is helpful in designing and controlling solidification processes in order to ach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2006